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T
he synthesis of colloidal particles is
important in such areas as paints,
hygiene products, drug delivery, and

nanotechnology. Their diversity makes such
particles attractive candidates for the de-
sign of self-assembling nanodevices.1 Much
recent synthetic effort has been spent on
moving beyond simple spherical colloids to
anisotropic particles of various shapes.2�4

Colloidal particles have also been synthesized
with “sticky patches” on their surfaces, which
interactwithpatchesonotherparticles.2,4 This
functionality suggests the possibility for self-
assembly of complex structures via a bottom-
up approach, without the need for the de-
tailed control required in a top-downmethod.
Self-assembly is governed by the interactions
between the building blocks, so in principle,
rational design of buildingblocks, tuning their
mutual interactions, can lead to systems that
self-assemble into specific target structures.3

Simulation of self-assembling systems is a
useful tool in guiding the synthesis of par-
ticles, which can suggest interesting syn-
thetic targets.5 Rational design of building
blocks for self-assembly is greatly facilitated
if the final structure can be predicted as a
function of the building block parameters.
The corresponding energy landscape con-
tains all the information necessary for such a
prediction, both in terms of the energetically
favorableminima, and the pathways between
them,whichdetermine the structures that can

easily be assembled.6�8 The simplestmodel of
colloidal particles involves hard sphereswith a
short-range square-well attraction,9 but other
potentials such as the Lennard-Jones and
Morse forms have also been considered.10�13

Anisotropic building blocks open up rich
avenues for sophisticated self-assembly into a
variety of target structures.3,14 Isotropicmodels
are not sufficient for describing these building
blocks, and representations with directional
patches have been considered.15,16 For exam-
ple,Wilber, Doye, and Louis used amodel with
Gaussian patches to study the self-assembly of
particles designed to form the five platonic
solids.17 They concluded that targets with
triangular faces are the easiest to assemble.
An assembly of particles with a diamond-

like crystal structure has been suggested as
a synthetic target due to the potentially
interesting photonic properties,18,19 and
numerical studies of patchy particles have
been carried out to investigate whether
they will crystallize to form this lattice.20

Creating a patchy particle that will assemble
into this crystal has so far had limited suc-
cess, due to the presence of frustration21 in
the energy landscape.22 A refinement of the
patchy model that involves two types of
patches (“patches” and “antipatches”) has
been suggested in the context of protein
crystallization,23,24 and by Wilber and co-
workers as a route tomore complicated self-
assembly targets.17 Here an antipatch is a
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ABSTRACT A model potential for colloidal building blocks is defined with two

different types of attractive surface sites, described as complementary patches and

antipatches. A Bernal spiral is identified as the global minimum for clusters with

appropriate arrangements of three patch�antipatch pairs. We further derive a

minimalist design rule with only one patch and antipatch, which also produces

a Bernal spiral. Monte Carlo simulations of these patchy colloidal building

blocks in the bulk are generally found to corroborate the global optimization

results.
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second type of patch that interacts with patches, but
not with other antipatches. Doye et al. have proposed a
binarymixture of oppositely charged patchy colloids to
achieve a similar effect.22

The present contribution focuses on the Bernal
spiral, a three-stranded helix composed of a chain of
face-sharing tetrahedra,25 as the target structure.
Although edge-sharing and corner-sharing chains of
tetrahedra are common, for example in silicate
minerals,26,27 extended chains of face-sharing tetrahe-
dra are much rarer.28 The spiral, first proposed by
Bernal,25 has been investigated in connection with
order in supercooled fluids.29,30 The feasibility of as-
sembling this structure at a molecular level has also
been investigated.28 Direct imaging of colloid gels by
confocal microscopy has revealed the presence of a
network of short connected Bernal spirals,31,32 while
triple helices formed from face-sharing tetrahedra
have been identified for assemblies of Janus spheres.33

Such short spiral strands have also appeared in com-
putational models of colloidal clusters involving only
isotropic interactions34,35 and have recently been iden-
tified in a bimetallic cluster.36

Here we define a potential for patchy colloids involv-
ing an isotropic component, describing the interac-
tion between spherical cores, and an anisotropic com-
ponent governed by two types of complementary
patches, in the spirit of the patch�antipatch (PAP)
framework recently introduced by Dorsaz et al.24 A
key feature of our representation is that the potential is
continuous, unlike most models for patchy colloids.
This feature makes the representation suitable for
structure prediction by global optimization techniques
that rely upon geometry optimization, as well as molec-
ular dynamics simulations. Using basin-hopping global
optimization, the model is investigated for different
realizations of patch�antipatch interactions, which en-
ables us to design a minimal representation of the
building blocks that supports a Bernal spiral. Subsequent
Monte Carlo simulations are generally found to corrobo-
rate the global optimization results.

RESULTS AND DISCUSSION

Patch�Antipatch Arrangement. A Bernal spiral can be
described as a stack of face-sharing regular tetrahedra.
If particles are placed at the vertices of each tetrahe-
dron, a three-stranded helix results, with each particle
having six nearest neighbors, except those at the ends.
A PAP arrangementwas designed so that there is a patch
or antipatch pointing at each of the nearest neighbors.
The three sticky spots pointing oneway along the helix,
in the direction taken to be the positive z-direction,
were assigned as patches, while the three pointing in
the negative z-direction were assigned as antipatches.

The particles can be considered to lie on the surface
of a cylinder along the z-axis with radius r = 3

√
3/10,

where the z offset between each particle is h = 1/
√
10.

The angular offset around the z-axis between two
successive patches is θ = arccos(�2/3) ≈ 131.8�. It is
interesting to note that θ is irrational, meaning that no
two particles in a spiral will ever have identical x and y

coordinates. With these definitions, the coordinates of
the nth particle in the helix can be written as

x0 ¼ (r, 0, 0), xn ¼ (r cos nθ, r sin nθ, nh) (1)

The structure is actually chiral, with right-handed and
left-handed structures; eq 1 gives the right-handed
spiral. The left-handed spiral can be obtained by
inverting the sign of the y coordinate in eq 1, but only
the right-handed spiral is considered explicitly below
unless otherwise specified. If eq 1 is used to calculate the
positions of seven consecutive particles (n = �3 to þ3),
thepositions of six particles relative to that ofparticle zero
provide the directions in which the patches and anti-
patches on the latter particle should point. These direc-
tion vectors are collected in Table 1.

Optimization of Parameters. Initially, global optimiza-
tion runs were carried out with small clusters of 12 and 18
particles (four per strand and six per strand, respectively)
without periodic boundary conditions to find a set of PAP
potential parameters for which a favorable Bernal spiral
structure couldbequickly identified.Given the tailor-made
arrangement of patches and antipatches, it is not surpris-
ing that theBernal spiralwas indeed foundtobe theglobal
minimum for a wide range of parameter space with three
pairs of patches and antipatches. Figure 1 shows plots of
thepotential and its different components for an ideal PAP
alignment with a representative set of parameters.

Finding the global minimum quickly does not
necessarily mean that the structure would self-assem-
ble easily, because the physically relevant dynamics
can be trapped by frustration,6,17 which can be over-
come by the large basin-hopping (BH) steps during global
optimization. However, being able to find the spiral quickly
is a good starting point. It was found that lower values
for s, a lower cosδ, and a higher ε all favored finding the
spiral quickly (see Methods section for definitions of these
parameters). These results can be understood in terms of
the underlying energy landscape: changing the para-
meters as stated increases the width and/or depth of the
basin of the spiral, making it more likely that a BH step

TABLE 1. The Patch and Antipatch Directions for a

Right-Handed Bernal Spiral

particle

number

particle

position (xyz)

patch type

(label)

patch

direction (xyz)

�3 0.423 �0.301 �0.949 p0 (30) �0.096 �0.301 �0.949
�2 �0.058 0.516 �0.633 p0 (20) �0.577 0.516 �0.633
�1 �0.346 �0.387 �0.316 p0 (10) �0.866 �0.387 �0.316
0 0.520 0 0
1 �0.346 0.387 0.316 p (1) �0.866 0.387 0.316
2 �0.058 �0.516 0.633 p (2) �0.577 �0.516 0.633
3 0.423 0.301 0.949 p (3) �0.096 0.301 0.949
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enters the funnel leading to the global minimum, and
then does not easily escape. The parameters chosen for
further study were R = 40, s = 8, cos δ = 0.75, and ε = 5,
which usually meant that the Bernal spiral was found
within 104 BH steps. The 18-particle spiral, which is the
global minimum, is shown in Figure 2.

Variation of Parameters. Having established a set of
parameters for the PAP potential that produced a Bernal
spiral as the globalminimum, variousmodifications were
considered to establish design principles that could be
followed in experimental fabrication. First, the patch
width was analyzed. It is intuitive that the Bernal spiral
will also be the global minimum at any narrower patch
width (cosδ > 0.75), as a narrower patch will not affect
the energy of the spiral so long as a PAP pair can be
aligned. However, very narrow patches are likely tomake
it difficult for the patch�antipatch pairs to locate each
other, and thus lead to slow assembly. The same is not
true for wider patches, as at some point, when patches
start to overlap significantly, there is the possibility of one

patch pointing between two antipatches (or vice versa)
and having a favorable interaction with both. We found
this situation for cosδ e 0.65, where the disordered
structure, shown in Figure 3a, becomes the global
minimum.

Increasing the value of ε produces similar effects to
increasing the value of cos δ. However, increasing εwill
change the shape of the landscape, deepening the
basins of frustrated local minima as well as the global
minimum. Beyond a certain point, raising the value of ε
is expected to increase frustration and therefore hinder
self-assembly. With ε = 0 (no PAP attraction) the global
minimum is a fragment of a hexagonal close-packed
lattice, as shown in Figure 3b. This structure is not the
same as the global minimum of the standard 12�6
Lennard-Jones potential37 due to the shorter range of
the 46�23 Mie potential employed here. A shorter
range destabilizes strained geometries, whose nearest-
neighbor contact distances deviate more from the
optimal value, and favors close-packed structures.38,39

Figure 1. Plots of V, UM, and wP for two values of εwith R = 40 and s = 8. These plots correspond to a patch and an antipatch
pointing directly at each other.

Figure 2. Alternative views of a Bernal spiral consisting of 18 particles. The particles are represented by the black spheres at
the tetrahedron vertices in the space-filling representation in (a). The texture and coloring of the faces were chosen to render
the packing as clear as possible. The structure is chiral; this is the right-handed structure. In the side and top views in part (b)
larger spheres in red depict the particle cores, while smaller spheres represent patches (blue) and antipatches (green).
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The minimum in Figure 3b has an energy 10% lower
than predicted for a Bernal spiral constituted from
these particles. In fact, the Bernal spiral is the global
minimum for values above ε = 1. It therefore follows
that attempts to synthesize patchy building blocks
directed at self-assembly of a Bernal spiral should
include patches with an attraction at least as strong
as the isotropic attraction between particles.

Since experimental syntheses are unlikely to pro-
duce patches with perfect geometrical distributions,
random perturbations were made to the patch orien-
tations, to estimate the angular tolerance of the global
minimum. To perturb each patch, a normalized vector
was generated from three uniformly distributed ran-
dom numbers between 0 and 1. The cross product of
this vector with the patch orientation vector was taken,

to produce a normalized vector with uniformly random
orientationwithin the planeperpendicular to the patch
vector. The patch vector was rotated about the per-
pendicular vector by an angle uniformly chosen from
the range �θ to þθ, where θ (in radians) is the
specified maximum rotation. Ten sets of patch direc-
tions were generated for each value of θ, and the
globalminimawere located. Forθe 0.24 small changes
to the energy, of order 1%, were found, but the Bernal
spiral structure was preserved. For θ g 0.25 disordered
structures, such as the one shown in Figure 3c, were
formed. The structure in Figure 3c is 10% lower in energy
than the unperturbed minimum. As for changes in the
patch width, θ = 0.25 is the point at which it becomes
possible for significant interactions between multiple
patches and antipatches on one pair of particles to occur.

Figure 3. Alternative representations of the global minima of clusters obtained for different sets of parameters. (a) For an 18-
particle cluster with cosδ = 0.65. Unlike Figure 2, some of the patches point between the antipatches on other particles,
indicating interactions between multiple patches and antipatches for some pairs of particles. This structure is 16% lower in
energy than the Bernal spiral with cosδ = 0.65. (b) For a 12-particle cluster with ε = 0. There is no PAP attraction, only the iso-
tropic 46�23 Mie potential. (c) For an 18-particle cluster with patch directions perturbed by up to 0.25 radians. As in
representation (a) some of the patches point between the antipatches on other particles, indicating multiple interactions
between some pairs.
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Removal of Patches. It is important to determine
which patches are actually necessary for the assembly
of the Bernal spiral and which are superfluous, so that
a minimalist design rule can be identified to guide

experimental synthesis of building blocks. To this end,
pairs of patches and antipatches were removed and the
global minimum was located using basin-hopping. Our
results suggest that only the (3,30) PAP pair (see Table 1)

Figure 4. (a) Side and top views of the global minimum for 18 particles, with only the PAP pair (3,30). (b) Alternative
representations of the global minimum for 18 particles, without the PAP pair (3,30). This structure is composed of three
octahedra and is 4% lower in energy than the Bernal spiral formed from the same building blocks.

Figure 5. The globalminima for 30 particles and periodic boundary conditionswith: (a) the PAP pair (1,10). The energy is 5.4%
lower than predicted for the Bernal spiral. (b) the PAP pair (2,20). The energy is 3.3% lower than for the Bernal spiral.
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is necessary. Figure 4 shows a Bernal spiral formed with
only these patches. Hence we predict formation of a
Bernal spiral with colloidal building blocks having only
one patch and antipatch at ∼169� to each other. It is
worthwhile to note that with only one PAP pair, the
buildingblock is achiral andenantiomeric right- and left-
handed Bernal spirals are the global minima. Figure 4
also shows the global minimum for 18 particles without
the (3,30) PAP pair, but with the other patches and
antipatches. This structure is composed of three octahe-
dra, and arises due to the fairlywidepatches being used,
illustrating the diverse variety of structures achievable
through a judicious choice of patch and antipatch
distributions.

Periodic Boundary Conditions. For a Bernal spiral of finite
length, some of the patches and antipatches at the ends
of the strands have no interactions (six at each end) and
this will affect the stability of the structure. We therefore
considered the building blocks under periodic boundary
conditions. Due to the short-range nature of the potential,
the minimum image convention was followed to reduce
the computational burden. This choice means that each
particle interacts with at most one image of every other
particle, simplifying the calculation.

The irrationalθmeans that no twoparticles will ever
lie precisely on top of each other, even in a very long
spiral, which implies that any representation of the
Bernal spiral as a repeating unit must introduce some
perturbation of the structure. It was found that with
vertex zero chosen as defined in Table 1, vertex 30 was
at (0.517,�0.052, 9.489). Vertex 30 was deemed suffi-
ciently close in x and y to be treated as a repeat of
vertex zero, so periodic structures were considered
with 30 particles. The full 30-particle periodic spiral
(not shown here) has an energy only 0.05%higher than
expected for 90 perfectly aligned PAP interactions.

The removal of patches was also analyzed using
periodic boundary conditions. Again it was found that
with only the (3,30) PAP pair, the Bernal spiral was the
global minimum. When PAP pairs (1,10) and (2,20) were
used, the spiral remained the global minimum, with a
cluster of five octahedra 2.4% higher in energy. This
result arises from the absence of noninteracting ends
of the spiral, which lowers its energy relative to the
octahedral cluster. With PAP pairs (1,10) and (3,30), and
with pairs (2,20) and (3,30), the Bernal spiral was also the
global minimum. For the single PAP pair (1,10) a cluster
was formed, which was too small to interact with its
periodic images, containing triangles fulfilling all the
PAP interactions, but with more isotropic interactions
than the spiral. A similar cluster formed for the PAP pair
(2,20), but with larger loops of particles, due to the
larger angle between patches (Figure 5).

We also considered compressing the geometry by
reducing the size of the box, while maintaining the
number of particles, in order to create the sort of defects
visible in confocal microscope images.31 The defect

structures include bent Bernal spirals, and spiral frag-
ments that join at an angle. Figure 6 shows structures
obtained from a cubic box of edge length 10.5, 9.5,
and 8.5 (compared with 11.1 for the perfect structure).
The geometry for 10.5 shows that a small amount
of compression can be accommodated by supercoiling
the helix, whereas for a box length of 9.5, the Bernal
spiral is broken. The structure with a box length of
8.5 exhibits a sawtooth morphology. All these struc-
tures are only a little higher in energy than the uncom-
pressed perfect Bernal spiral (not shown). The increase
for the 10.5 structure is due to imperfect alignment
of the patches. For the other structures a few of
the patches and antipatches have unsatisfied contacts,
as indicated by green and blue spheres without a
contact.

Figure 6. Alternative representations of the global minima
for 30 particles and periodic boundary conditions with
decreasing box size. (a) With a box length of 10.5, we see
supercoiling of the helix. (b) For a box length of 9.5, the spiral
is broken. (c) With box length 8.5, the global minimum
exhibits twobreaks, forming a sawtooth pattern. These three
structures are higher in energy by 3.5%, 5.7%, and 6.4%,
respectively, compared to the Bernal spiral obtained with a
box length of 11.1 (not shown).
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Monte Carlo Simulations. To test whether the Bernal
spirals obtained from global optimization can indeed be
self-assembled under thermal conditions we performed
Monte Carlo simulations of the bulk. To speed up the
computation and reduce the parameter space we em-
ployed the generalized version of the Kern�Frenkel
potential,15 recently introduced by Dorsaz et al.,24 to
describe the PAP interaction, while the isotropic compo-
nent was represented by a hard sphere interaction with
an attractive square-well of strength εiso. The range of
both the isotropic and the PAP interactions was set
to λ0 = 1.24d, where d is the hard sphere diameter.

This discontinuous potential is very close to the contin-
uous form employed in the global optimization searches.
The parameter controlling patch width was set to
0.94 to ensure that a patch can only interact favorably
with a single complementary patch for the chosen
range of the square-well potential. The key parameters
that we varied are εiso and the temperature T, both
expressed in units of the PAP interaction, εpap. All the
Monte Carlo simulations were performed at a packing
fraction of φ = π/6Fd3 = 0.0058 and with N = 300
particles. A rather dilute system was chosen to reduce
the possibility of the system getting into kinetic traps.

Figure 7. Snapshots of configurations obtained from Monte Carlo simulations of patchy colloids with all three pairs of
patches and antipatches at three temperatures (T = 0.20, 0.18, 0.10 from left to right) in the absence of isotropic attraction
between the particles (εiso = 0). Bernal spirals in equilibrium with a low density liquid are obtained on decreasing the
temperature below T = 0.20. For temperatures below about 0.15 the system is arrested in many short spirals.

Figure 8. Phase behavior of patchy colloids with the PAP pairs (2,20) and (3,30) in the temperature�εiso plane. Snapshots of
configurations corresponding to different states are also shown; from right to left, a liquid state, a state with predominantly
Bernal spiral structures, a somewhat arrested state with some Bernal spiral structures, and a completely arrested state. The
phase diagram is based on the final configurations of our Monte Carlo runs.
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We first considered a system of patchy colloids with
three pairs of patches and antipatches, as in Table 1.
We found that the isotropic attraction between the
particles was not necessary for the Bernal spiral to be
observed. For εiso = 0, the system assembles into Bernal
spirals in equilibrium with a low density liquid at
intermediate temperatures. At high temperatures it
forms a liquid state and at low temperatures we
observed an arrested state composed of spirals
(Figure 7). Next, we show the phase behavior in the
T�εiso plane in Figure 8 for the patchy colloids with the
PAP pair (1,10) removed. For a purely patchy attraction
between the particles (i.e., εiso = 0) we did not observe
the assembly of Bernal spirals in our Monte Carlo
simulations for the discrete set of temperatures inves-
tigated. The system passes directly from a liquid state
at T = 0.13 to a condensed state at T = 0.12. When the
isotropic square-well attraction between the particles
was turned on at εiso = 0.05, a narrow regime was
found at intermediate temperatures where equilibrium
Bernal spirals formed. For slightly larger εiso, the spirals
also nucleated, but out of dense liquid droplets in
what appears to be an interesting two-step nuclea-
tion process. At slightly lower temperatures [such as
state point (0.12,0.12)] Bernal spirals formed less easily
out of the condensed (almost arrested) liquid and
nucleation was incomplete on the simulation time
scale. Above εiso = 0.15, condensation due to the
isotropic part of the interaction dominated over direc-
tional PAP interaction, preventing the formation of
spirals.

Finally, we performed a similar study with only the
PAP pair (3,30) on each particle. We found more com-
plex behavior, encompassing liquid and condensed
phases and an interesting phase, where chains of
particles formed (low T and small εiso) and assembled
into long compact fibers (made of more than three
chains) upon increasing εiso (Figure 9). However, we
have not yet been able to tune the temperature and
εiso to observe the Bernal spiral structure in this case.
Given the sensitivity to small changes of T or εiso, it is
possible that spirals may form for different combina-
tions of parameters or different packing fractions, or
that longer simulations are required.

CONCLUSIONS

The PAP potential employed in the present work
provides a powerful model for investigating systems of
monodisperse patchy colloidal particles, which are of
increasing interest as synthetic techniques advance.
Given the tailored spatial arrangement of three pairs of
patches and antipatches in the six-patch building
blocks considered here, it is not surprising that we
observed Bernal spirals as the global minima for finite-
size systems initially. The key finding of the present
work is a minimalist design rule that we derive by
systematic removal of the patches. A patch�antipatch
pair offset slightly (∼10�) from the directly opposite
spatial arrangement is found to be sufficient for the
ground state structure to be a Bernal spiral. The present
work not only offers a minimalist design rule that is a
realistic target for state-of-the-art experimental fabri-
cation, it also describes a rational approach to derive
this rule. Another critical element of the design is that
the directional patch�antipatch attraction must be
stronger than the isotropic interaction. Our strategy is
found to be quite robust to imperfection in the spatial
arrangement of the patch�antipatch pairs. This feature
makes the building blocks attractive for experimental
fabrication to realize target structures via self-assembly.40

Compressed spirals exhibit supercoiling or breaks, which
resemble structures seen in confocal microscopy.
The observation of triple helices with Janus spheres

in recent experimental work and in a related model
system,33 where directionality of interactions plays a
crucial role, is clearly relevant to the present work. Bernal
spirals, alternatively called Boerdijk�Coxeter helices,
emerged in the experiments with Janus spheres through
kinetics, while we have derived design principles for
thermodynamically favorable Bernal spirals with patchy
interactions. It is interesting to note that our two-patch
buildingblockswith complementarypatchandantipatch
are similar in spirit to Janus particles, especially for wider
patch widths.
The PAP potential is also likely to be useful for inves-

tigating protein crystallization. As the potential has no
inherent length scale, tuning the parameters for
roughly spherical proteins should be possible. Patch

Figure 9. Snapshots of configurations obtained fromMonte Carlo simulations of patchy colloids with only the PAP pair (3,30),
showing chains of particles and fiber-like structures. From left to right, (T,εiso) = (0.09, 0.00), (0.07, 0.05) and (0.08, 0.10).
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configurations could be designed based on crystal con-
tacts in known structures, or on the nature of surface
residues. Having such a simple potential that could

usefully mimic protein crystallization would be a signifi-
cant asset in the ongoing investigations into this
process.32,41,42

METHODS
The Model. The patch�antipatch potential considered here

models patchy colloids in terms of rigid building blocks con-
sisting of a spherical core with decorated patches of two types,
which are called “patches” and “antipatches” to distinguish
them. The potential is defined by an isotropic component
describing the interaction between the spherical cores, and
an anisotropic component describing the directional interac-
tion between patches, p, and antipatches, p0 . Patches have an
attractive interaction with antipatches, but do not interact with
other patches; nor do antipatches interact with other anti-
patches. The PAP interaction includes a short-ranged spheri-
cally symmetric potential modulated by a function of the
relative orientations of the PAP pair, and hence is anisotropic
overall. Only pairwise interactions are considered, and the pair
potential can be written as

V(rij ,Ωi ,Ωj) ¼ UM(rij)þUθ(rij ,Ωi ,Ωj)wP(rij) (2)

where rij = rj � ri is the vector displacement of rigid body j
relative to i, rij is the distance between bodies i and j, and Ωi

defines the orientation of body i. The isotropic component, UM,
is a 46�23 Mie potential.43 This form was chosen to match
closely what was proposed by ten Wolde and Frenkel,44 but
without the hard-core repulsion:

UM(rij) ¼ 4
σ

rij

 !46

� σ

rij

 !23
2
4

3
5, σ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

R1=3

r
(3)

The parameter R can be used to control the range of the
isotropic potential relative to the patch�antipatch interaction.
The distance dependence of the PAP attraction is governed by
the function wP:

wP(rij) ¼
�1, if (rij � λ) < 0

�1
2
[1þ cos(π(rij � λ)s)], if 0e(rij � λ)es�1

0, if (rij � λ) > s�1

8><
>: (4)

λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

R

� �1=3
s

(5)

where λ is the largest separation at which the attraction is at its
strongest and the parameter s controls the range overwhich the
attraction decreases to zero. A larger value of s gives a steeper
slope. The angular dependence of the PAP attraction is de-
scribed by Uθ:

Uθ(rij ,Ωi ,Ωj) ¼ εpi ,pj

1
4
[1þΦ(rij ,Ωi ,pi)][1þΦ(rji ,Ωj ,pj)] (6)

Φ(rij ,Ωi ,pi) ¼
�1, cosθijpi < cosδ

�cos
π[cosθijpi � cosδ]

1 � cosδ

� �
, cosθijpigcosδ

8<
:

(7)

The maximum strength of the PAP interaction compared to the
isotropic potential is controlled by εpi,pj

, which is nonzero only if
the two patches are of opposite type. pi is a normalized vector
from the center of rigid body i in the direction of the patch,
which depends on Ωi, and cos θijpi is the scalar product of
the normalized vector r̂ij with pi. The width of the patches
is controlled by the parameter cos δ. The chosen forms of
eqs 5 and 7 make the respective functions and their first
derivatives continuous (Figure 1). We employed an angle-axis

representation for rigid-body rotational coordinates,45,46 and
analytical first derivatives were obtained in a computationally
efficient way.46

For computational accuracy under periodic boundary con-
ditions, it is useful to have V decreasing continuously to zero at
some cutoff distance less than half the smallest cell dimension.
To achieve this functional form, a modified version of UM was
used:47

Uper
M (rij) ¼ 4

σ

rij

 !46

� σ

rij

 !23
2
4

3
5

8<
:

þ 23
σ

rc

� �46

� 23
2

σ

rc

� �23
" #

rij
rc

� �2

� 24
σ

rc

� �46

þ 25
2

σ

rc

� �23
)

(8)

where rc is the cutoff distance, beyond which UM
per = 0. This form

has first derivatives that also go continuously to zero at rc. No
adjustment to the PAP interaction is required, as long as λþ s�1

< rc, as the PAP interaction already tends to zero. The modified
form does not differ significantly in the well region from eq 3 for
rc > 2.5. Therefore the length of the cubic box was set greater
than 5.

Structure Prediction. For structure prediction we employed
the basin-hopping (BH) global optimization technique,48�50 as
implemented in the program GMIN,51 which uses a customized
L-BFGSminimizer52 to reduce the total root-mean-square (RMS)
force to a specified tolerance for each proposed step. Typically
we employed 105 BH steps, each involving random particle
displacements in both translational and rotational coordinates,
starting from 10 random configurations. The step sizes are
much larger than those commonly used in Monte Carlo simula-
tions of equilibrium thermodynamics, since the objective here is
to step out of a basin. If these runs produced a consensus for the
lowest minimum, this structure was accepted as the putative
global minimum. Otherwise, longer BH runs were conducted
until this condition was achieved. In some cases a Bernal spiral,
identified as a putative global minimum for a different set of
parameters, was used as the starting configuration to check the
convergence.

Percolation. The standard method in GMIN to prevent parti-
cles evaporating from a finite-sized cluster is to contain them
within a sphere. Any particles that move outside the spherical
container during a BH step or minimization are replaced within
the sphere. It seemed likely that, for the short-ranged PAP
potential, and considering the anisotropic morphology of the
Bernal spiral, this method might not be optimal. An alternative
approach is to require that any potential minimum is a percolat-
ing structure, meaning that it is possible to find a path from any
one particle to any other particle by steps between particles
no larger than a certain defined distance. In the language of
graph theory, if a graph is formed with particles as the vertices,
and an edge added between any two particles less than the
cutoff distance from each other, the graph is required to be
connected.53 The connectivity of the graph can be assessed
efficiently with a depth-first search.54 Additionally, a harmonic
compression potential, with a specified force constant, was
used to help produce connected clusters, and was turned off
when a chosen RMS force was achieved in each minimization.
BH steps and minimizations were performed until a percolating
minimum was found. Thereafter, any step that produced a
disconnected minimum was rejected. For the relatively small
systems considered in the present work, both the percolation
condition and a spherical container proved to be effective.

Monte Carlo Simulations. We performed Monte Carlo simula-
tions in the NVT ensemble for a system of N = 300 particles
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enclosed in a cubic box at a packing fraction of φ = π/6Fd3 =
0.0058. After equilibration at a high temperature (T = 1.0), the
system was quenched instantaneously to a series of tempera-
tures of interest. Following equilibration, simulations were run
for 107 MC steps. Each MC step consisted of N attempts for
single-particle translational and rotational moves each.15
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